References Citing Specific EpiCypher Products

Nucleosomes Antibodies Proteins/Enzymes Peptides Peptide Arrays

SNAP-ChIP spike-in controls - Catalog No. 19-1001, 19-2001, 19-3001

  • Janssen A et al (2018) Timely double-strand break repair and pathway choice in pericentromeric heterochromatin depend on the histone demethylase dKDM4A. Genes Dev. Link
  • Yeganeh M et al (2018) Differential regulation of RNA polymerase III genes during liver regeneration, Nucleic Acids Research Link
  • Shah RN et al (2018) Examining the Roles of H3K4 Methylation States with Systematically Characterized Antibodies. 2018. Molecular Cell 72, 162–177 Link

Nucleosomes

Methyl DNA nucleosomes - Catalog No. 16-2003, 16-2004, 16-2103, 16-2104

  • Vaughan RB et al (2018) Chromatin structure and its chemical modifications regulate the ubiquitin ligase substrate selectivity of UHRF1. PNAS 115 (35) 8775-8780 Link

Modified Designer Recombinant Nucleosomes - Catalog No. 16-0313, 16-0314,16-0315, 16-0316, 16-0317, 16-0319, 16-0320, 16-0321, 16-0322, 16-0334, 16-0338, 16-0339, 16-0343

  • Bartlett E et al (2018) Interplay of Histone Marks with Serine ADP-Ribosylation. Cell Reports, 24(13), 3488–3502.e5 Link
  • Shah RN et al (2018) Examining the Roles of H3K4 Methylation States with Systematically Characterized Antibodies. 2018. Molecular Cell 72, 162–177 Link
  • Raisner R et al (2018) Enhancer Activity Requires CBP/P300 Bromodomain-Dependent Histone H3K27 Acetylation. Cell Reports 24, 1722–1729 Link
  • Vaughan RM et al (2018) Comparative biochemical analysis of UHRF proteins reveals molecular mechanisms that uncouple UHRF2 from DNA methylation maintenance. Nucleic Acids Research Vol 46, Issue 9, 18 May 2018, Pages 4405–4416 Link
  • Slaughter MJ et al (2018) PBRM1 bromodomains variably influence nucleosome interactions and cellular function J. Biol. Chem. 293: 13592 Link

Recombinant Nucleosomes - Catalog No. 16-0006, 16-0009

  • Connelly KE et al (2018) Engagement of DNA and H3K27me3 by the CBX8 chromodomain drives chromatin association, Nucleic Acids Research Link
  • Bartlett E et al (2018) Interplay of Histone Marks with Serine ADP-Ribosylation. Cell Reports, 24(13), 3488–3502.e5 Link
  • Zhang Y et al (2018) The ZZ domain of p300 mediates specificity of the adjacent HAT domain for histone H3. Nature Structural & Molecular Biology Link
  • Mi W et al (2018). The ZZ-type zinc finger of ZZZ3 modulates the ATAC complex-mediated histone acetylation and gene activation. Nature Communications 9(1). Link
  • Raisner R et al (2018) Enhancer Activity Requires CBP/P300 Bromodomain-Dependent Histone H3K27 Acetylation. Cell Reports 24, 1722–1729 Link
  • Wang Y et al (2018) KAT2A coupled with the α-KGDH complex acts as a histone H3 succinyltransferase. Nature. 2017;552(7684):273-277. Link
  • Vaughan RM et al (2018) Comparative biochemical analysis of UHRF proteins reveals molecular mechanisms that uncouple UHRF2 from DNA methylation maintenance. Nucleic Acids Research Vol 46, Issue 9, 18 May 2018, Pages 4405–4416 Link
  • Slaughter MJ et al (2018) PBRM1 bromodomains variably influence nucleosome interactions and cellular function J. Biol. Chem. 293: 13592 Link
  • Lillico R et al (2018) Selective DOT1L, LSD1, and HDAC Class I Inhibitors Reduce HOXA9 Expression in MLL-AF9 Rearranged Leukemia Cells, But Dysregulate the Expression of Many Histone-Modifying Enzymes. Journal of Proteome Research 17 (8), 2657-2667 Link
  • Munari F et al (2012). Methylation of lysine 9 in histone H3 directs alternative modes of highly dynamic interaction of heterochromatin protein hHP1β with the nucleosome. J Biol Chem 287: 33756-33765. Link
  • Lowary PT and J Widom (1998). New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. J Mol Biol 276: 19-42. Link
  • Luger K et al (1999). Expression and purification of recombinant histones and nucleosome reconstitution. Methods Mol Biol 119: 1-16. Link

HeLa Nucleosomes - Catalog Nos. 16-0002 and 16-0003

  • DaRosa PA et al (2018) A Bifunctional Role for the UHRF1 UBL Domain in the Control of Hemi-methylated DNA-Dependent Histone Ubiquitylation. Molecular Cell Link
  • Tran et al (2018). Set4 is a chromatin-associated protein, promotes survival during oxidative stress, and regulates stress response genes in yeast. J. Biol. Chem. 2018 293: 14429-. Link
  • Vaughan RM et al (2018) Comparative biochemical analysis of UHRF proteins reveals molecular mechanisms that uncouple UHRF2 from DNA methylation maintenance. Nucleic Acids Research Vol 46, Issue 9, 18 May 2018, Pages 4405–4416 Link
  • Fasci D et al. (2018) Histone Interaction Landscapes Visualized by Crosslinking Mass Spectrometry in Intact Cell Nuclei. Molecular & Cellular Proteomics 17 (10) 2018-2033; Link
  • Masuda Y et al (2015). TRIM29 regulates the assembly of DNA repair proteins into damaged chromatin.. Nature Comm 442: 7299. Link
  • Kuo AJ et al (2011). NSD2 links dimethylation of histone H3 at lysine 36 to oncogenic programming. Mol Cell 44: 609-620. Link
  • Matthews AG et al (2007). RAG2 PHD finger couples histone H3 lysine 4 trimethylation with V(D)J recombination. Nature 450: 1106-1110. Link
  • Shi X et al (2006). ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression. Nature 442: 96-99. Link
  • Laurent B and Y Shi. (2016). Expression, Purification, and Biochemical Analysis of the LSD1/KDM1A Histone Demethylase. Meth Enzymol doi: 10.1016/bs.mie.2016.02.001. Link

Chicken Nucleosomes - Catalog No. 16-0004

  • Adhvaryu KK et al (2005). Methylation of histone H3 lysine 36 is required for normal development in Neurospora crassa. Eukaryot Cell 4: 1455-1564. Link
  • Kizer KO et al (2005). A novel domain in Set2 mediates RNA polymerase II interaction and couples histone H3 K36 methylation with transcript elongation. Mol Cell Biol 25: 3305-3316. Link
  • Morris SA et al (2005). Histone H3 K36 methylation is associated with transcription elongation in Schizosaccharomyces pombe. Eukaryot Cell 4: 1446-1454. Link

Recombinant Octamers - Catalog No. 16-0001

  • Chang L et al (2018) ITCH nuclear translocation and H1.2 polyubiquitination negatively regulate the DNA damage response. Nucleic Acids Research Link
  • Kaczmarczyk A et al (2018) Probing Chromatin Structure with Magnetic Tweezers. In: Lyubchenko Y. (eds) Nanoscale Imaging. Methods in Molecular Biology Link
  • Masuda Y et al (2015). TRIM29 regulates the assembly of DNA repair proteins into damaged chromatin.. Nature Comm 442: 7299. Link
  • Cao XJ et al (2013). Large-scale global identification of protein lysine methylation in vivo. Epigenetics 8: 477 - 485. Link

Histone CENP-A / H4 Tetramer, Recombinant Human - Catalog No. 16-0010

  • Stumme-Diers MP et al (2018) Assembly of Centromere Chromatin for Characterization by High-Speed Time-Lapse Atomic Force Microscopy. In: Lyubchenko Y. (eds) Nanoscale Imaging. Methods in Molecular Biology Link

Histone H3 / H4 Tetramer, Recombinant Human - Catalog No. 16-0008

  • Stumme-Diers MP et al (2018) Assembly of Centromere Chromatin for Characterization by High-Speed Time-Lapse Atomic Force Microscopy. In: Lyubchenko Y. (eds) Nanoscale Imaging. Methods in Molecular Biology Link

Nucleosome Assembly 601 Sequence, 187bp - Catalog No. 18-2004

  • Connelly KE et al (2018) Engagement of DNA and H3K27me3 by the CBX8 chromodomain drives chromatin association, Nucleic Acids Research Link
  • Chang L et al (2018) ITCH nuclear translocation and H1.2 polyubiquitination negatively regulate the DNA damage response. Nucleic Acids Research Link

Biotinylated 601 DNA - Catalog No. 18-0005

  • Connelly KE et al (2018) Engagement of DNA and H3K27me3 by the CBX8 chromodomain drives chromatin association, Nucleic Acids Research Link
  • Chang L et al (2018) ITCH nuclear translocation and H1.2 polyubiquitination negatively regulate the DNA damage response. Nucleic Acids Research Link
  • Lowary PT and J Widom (1998). New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. J Mol Biol 276: 19-42. Link

Antibodies

Asymmetric Dimethyl-arginine Antibody (ADMA) Asym26 - Catalog No. 13-0011

  • Vadnais C, et al. (2018) GFI1 facilitates efficient DNA repair by regulating PRMT1 dependent methylation of MRE11 and 53BP1. Nat Commun. doi:10.1038/s41467-018-03817-5. Link
  • Sho Araoi et al (2018) The GATA transcription factor ELT-2 modulates both the expression and methyltransferase activity of PRMT-1 in Caenorhabditis elegans, The Journal of Biochemistry:433–440 Link

Asymmetric Dimethyl-arginine Antibody (ADMA) Asym25b - Catalog No. 13-0010

  • Boisvert FM et al (2003). A proteomic analysis of arginine-methylated protein complexes.Mol Cell Proteom 2: 1319-1330. Link
  • Yu Z et al (2009). A mouse PRMT1 null allele defines an essential role for arginine methylation in genome maintenance and cell proliferation. Mol Cell Biol 29: 2982-2996. Link
  • Yu Z et al (2012). The MRE11 GAR motif regulates DNA double-strand break processing and ATR activation.Cell Res 22: 305-320. Link
  • Tradewell ML et al (2012). Arginine methylation by PRMT1 regulates nuclear-cytoplasmic localization and toxicity of FUS/TLS harbouring ALS-linked mutations. Hum Mol Genet 21: 136-149. Link

CARM1 / PRMT4 - Catalog No. 13-0006

  • Quintero, CM., et al (2018). CARM1 (PRMT4) Acts as a Transcriptional Coactivator during Retinoic Acid-Induced Embryonic Stem Cell Differentiation. Journal of Molecular Biology. Link
  • Yu Z et al (2009). A mouse PRMT1 null allele defines an essential role for arginine methylation in genome maintenance and cell proliferation. Mol Cell Biol 29: 2982-2996. Link
  • Kim J et al (2004) J Biol Chem 279: 25339-25344. Link

Histone H3 C-terminal Antibody - Catalog No. 13-0001

  • Vaughan RB et al (2018). Chromatin structure and its chemical modifications regulate the ubiquitin ligase substrate selectivity of UHRF1. PNAS 115 (35) 8775-8780 Link
  • Slaughter MJ et al (2018) PBRM1 bromodomains variably influence nucleosome interactions and cellular function J. Biol. Chem. 293: 13592 Link
  • Dronamraju R et al. (2018) Casein Kinase II Phosphorylation of Spt6 Enforces Transcriptional Fidelity by Maintaining Spn1-Spt6 Interaction. Cell Rep:3476-3489.e5. Link
  • Chao Yan, et al. (2018) Systematic Study of Nucleosome-Displacing Factors in Budding Yeast, Molecular Cell:294-305Link
  • Raghuvar Dronamraju, et al (2018) Set2 methyltransferase facilitates cell cycle progression by maintaining transcriptional fidelity, Nucleic Acids Research: 1331–1344 Link
  • Jha DK and Strahl BD (2014). An RNA polymerase II-coupled function for histone H3K36 methylation in checkpoint activation and DSB repair. Nat Commun 5: 3965. Link
  • Rothbart SB et al (2012). Association of UHRF1 with methylated H3K9 directs the maintenance of DNA methylation. Nat Struct Mol Biol 11: 1155-1160. Link
  • Rizzardi LF et al (2012). DNA replication origin function is promoted by H3K4 di-methylation in Saccharomyces cerevisiae. Genetics 192: 371-384. Link
  • Rothbart SB et al (2013). Multivalent histone engagement by the linked tandem Tudor and PHD domains of UHRF1 is required for the epigenetic inheritance of DNA methylation. Genes Dev 27: 1288-1298. Link

Histone H3K9Ac Antibody - Catalog No. 13-0020

  • Rahnamoun, H., et al (2018). RNAs interact with BRD4 to promote enhanced chromatin engagement and transcription activation. Nature Structural & Molecular Biology, 25(8), 687–697.Link

Histone H3K4me2 SNAP-ChIP Certified - Catalog No. 13-0013 or Catalog No. 13-0027

  • Shah RN et al (2018) Examining the Roles of H3K4 Methylation States with Systematically Characterized Antibodies. 2018. Molecular Cell 72, 162–177 Link
  • Ibrahim, MM., et al (2018). Determinants of promoter and enhancer transcription directionality in metazoans. Nature Communications Link

H3K4me3 - Catalog No. 13-0004

  • Shah RN et al (2018) Examining the Roles of H3K4 Methylation States with Systematically Characterized Antibodies. 2018. Molecular Cell 72, 162–177 Link
  • Dronamraju R et al. (2018) Casein Kinase II Phosphorylation of Spt6 Enforces Transcriptional Fidelity by Maintaining Spn1-Spt6 Interaction. Cell Rep:3476-3489.e5. Link
  • Zhang L et al (2005). Altered nucleosome occupancy and histone H3K4 methylation in response to 'transcriptional stress'. EMBO J 24: 2379-2390. Link
  • Seward DJ et al (2007). Demethylation of trimethylated histone H3 Lys4 in vivo by JARID1 JmjC proteins. Nat Struct Mol Biol 14: 240-242. Link

NSD2 - Catalog No. 13-0002

  • Zhuang L, Jang Y, Park YK, et al. (2018) Depletion of Nsd2-mediated histone H3K36 methylation impairs adipose tissue development and function. Nat Commun. 2018;9(1):1796. Link
  • Kuo AJ et al (2011). NSD2 links dimethylation of histone H3 at lysine 36 to oncogenic programming. Mol Cell 44: 609-620. Link

PRMT1 - Catalog No. 13-0007

  • Côte J et al (2003). Sam68 RNA binding protein is an in vivo substrate for protein arginine N-methyltransferase 1. Mol Biol Cell 14: 274-287. Link
  • Yu Z et al (2009). A mouse PRMT1 null allele defines an essential role for arginine methylation in genome maintenance and cell proliferation. Mol Cell Biol 29: 2982-2996. Link
  • Tradewell ML et al (2012). Arginine methylation by PRMT1 regulates nuclear-cytoplasmic localization and toxicity of FUS/TLS harbouring ALS-linked mutations. Hum Mol Genet 21: 136-149. Link
  • Dhar S et al (2013). Loss of the major Type I arginine methyltransferase PRMT1 causes substrate scavenging by other PRMTs. Sci Rep 3: 1311. Link

PRMT5 / JBP1 - Catalog No. 13-0008

  • Boisvert FM et al (2002). Symmetrical dimethylarginine methylation is required for the localization of SMN in Cajal bodies and pre-mRNA splicing. J Cell Biol 159: 957-969. Link
  • Gonsalvez GB et al (2007). Two distinct arginine methyltransferases are required for biogenesis of Sm-class ribonucleoproteins. J Cell Biol 178: 733-740. Link
  • Yu Z et al (2009). A mouse PRMT1 null allele defines an essential role for arginine methylation in genome maintenance and cell proliferation. Mol Cell Biol 29: 2982-2996. Link

PRMT7 - Catalog No. 13-0009

  • Gonsalvez GB et al (2007). Two distinct arginine methyltransferases are required for biogenesis of Sm-class ribonucleoproteins. J Cell Biol 178: 733-740. Link
  • Yu Z et al (2009). A mouse PRMT1 null allele defines an essential role for arginine methylation in genome maintenance and cell proliferation. Mol Cell Biol 29: 2982-2996. Link

SETD2 - Catalog No. 13-0025

  • Gautam D, et al (2018) SETD2-dependent H3K36me3 plays a critical role in epigenetic regulation of the HPV31 life cycle. PLoS Pathog 14(10): e1007367. Link

SETD6 - Catalog No. 13-0003

  • Levy D et al (2011). Lysine methylation of the NF-κB subunit RelA by SETD6 couples activity of the histone methyltransferase GLP at chromatin to tonic repression of NF-κB signaling. Nat Immunol 12: 29-36. Link

Symmetric Dimethyl-arginine Antibody (SDMA) Sym10 - Catalog No. 13-0012

  • Boisvert FM et al (2002). Symmetrical dimethylarginine methylation is required for the localization of SMN in Cajal bodies and pre-mRNA splicing. J Cell Biol 159: 957-969. Link
  • Boisvert FM et al (2003). A proteomic analysis of arginine-methylated protein complexes.Mol Cell Proteom 2: 1319-1330. Link
  • Côte J et al (2005). Tudor domains bind symmetrical dimethylated arginines. J Biol Chem 280: 28476-28483. Link
  • Deng X et al (2010). Arginine methylation mediated by the Arabidopsis homolog of PRMT5 is essential for proper pre-mRNA splicing. PNAS USA 107: 19114–19119. Link
  • Jung GA et al (2011). Methylation of eukaryotic elongation factor 2 induced by basic fibroblast growth factor via mitogen-activated protein kinase. Exp Mol Med 43:550-560. Link

Enzymes and Recombinant Proteins

CENP-A / H4 Tetramers - Catalog No. 16-0010

  • Sekulic N et al (2010). The structure of (CENP-A-H4)2 reveals physical features that mark centromeres. Nature 476: 347-351. Link
  • Falk SJ et al (2015). CENP-C reshapes and stabilizes CENP-A nucleosomes at the centromere. Science 348: 699-703. Link

DOT1L - Catalog No. 15-1001

  • Stumme-Diers MP et al (2018) Assembly of Centromere Chromatin for Characterization by High-Speed Time-Lapse Atomic Force Microscopy. In: Lyubchenko Y. (eds) Nanoscale Imaging. Methods in Molecular Biology Link
  • Kuo AJ et al (2011). NSD2 links dimethylation of histone H3 at lysine 36 to oncogenic programming. Mol Cell 44: 609-620. Link

G9a - Catalog No. 15-1008

  • Kuo AJ et al (2011). NSD2 links dimethylation of histone H3 at lysine 36 to oncogenic programming. Mol Cell 44: 609-620. Link

Histone H2A/H2B Dimer, Recombinant Human - Catalog No. 15-0311

  • Stumme-Diers MP et al (2018) Assembly of Centromere Chromatin for Characterization by High-Speed Time-Lapse Atomic Force Microscopy. In: Lyubchenko Y. (eds) Nanoscale Imaging. Methods in Molecular Biology Link

Histone H2A, Recombinant Human - Catalog No. 15-0301

  • Stumme-Diers MP et al (2018) Assembly of Centromere Chromatin for Characterization by High-Speed Time-Lapse Atomic Force Microscopy. In: Lyubchenko Y. (eds) Nanoscale Imaging. Methods in Molecular Biology Link

Histone H2B, Recombinant Human - Catalog No. 15-0302

  • Stumme-Diers MP et al (2018) Assembly of Centromere Chromatin for Characterization by High-Speed Time-Lapse Atomic Force Microscopy. In: Lyubchenko Y. (eds) Nanoscale Imaging. Methods in Molecular Biology Link

Histone H4, Recombinant Human - Catalog No. 15-0304

  • Stumme-Diers MP et al (2018) Assembly of Centromere Chromatin for Characterization by High-Speed Time-Lapse Atomic Force Microscopy. In: Lyubchenko Y. (eds) Nanoscale Imaging. Methods in Molecular Biology Link

L3MBTL1 3xMBT Domain - Catalog No. 15-0043

  • Moore KE et al (2013). A general molecular affinity strategy for global detection and proteomic analysis of lysine methylation. Mol Cell 50: 444-456. Link

SETD6 - Catalog No. 15-1004

  • Levy D et al (2011). Lysine methylation of the NF-κB subunit RelA by SETD6 couples activity of the histone methyltransferase GLP at chromatin to tonic repression of NF-κB signaling. Nat Immunol 12: 29-36. Link

SMYD3 - Catalog No. 15-1007

  • Van Aller GS et al (2012). Smyd3 regulates cancer cell phenotypes and catalyzes histone H4 lysine 5 methylation. Epigenetics 7: 340-343. Link

Biotinylated Histone Peptides- Link

  • Bartlett, E., et al (2018). Interplay of Histone Marks with Serine ADP-Ribosylation. Cell Reports, 24(13), 3488–3502.e5. Link
  • Alhazmi AS et al. (2018). The chromatin remodeling complex NURF localizes to gene bodies and is required for mRNA processing. J Biol Chem. 2018 Aug 23 Link
  • Yang, Z., et al (2018). EBS is a bivalent histone reader that regulates floral phase transition in Arabidopsis. Nature Genetics.Link
  • Li S et al (2016). Mouse MORC3 is a GHKL ATPase that localizes to H3K4me3 marked chromatin. PNAS USA Link
  • Zhang CJ et al (2016). The Arabidopsis acetylated histone-binding protein BRAT1 forms a complex with BRP1 and prevents transcriptional silencing. Nat Commun 7: 11715. doi: 10.1038/ncomms11715 Link
  • Khan DH et al (2016). Dynamic Histone Acetylation of H3K4me3 Nucleosome Regulates MCL1 Pre-mRNA Splicing. J Cell Physiol. doi: 10.1002/jcp.25337 Link
  • Hattori T, Taft JM, Swist KM, Luo H, Witt H, Slattery M, Koide A, Ruthenburg AJ, Krajewski K, Strahl BD, White KP, Farnham PJ, Zhao Y, Koide S (2013). Recombinant antibodies to histone post-translational modifications. Nat Methods 10: 992-995. Link
  • Fuchs SM, Krajewski K, Baker RW, Miller VL, Strahl BD (2011). Influence of combinatorial histone modifications on antibody and effector protein recognition. Curr Biol 21: 53-58. Link

Histone Peptide Arrays- Catalog No. 11-4001

  • Mauser, R., & Jeltsch, A. (2018). Application of modified histone peptide arrays in chromatin research. Archives of Biochemistry and Biophysics. Link
  • Liu, H., Peng, L., So, J. et al. (2018) TSPYL2 Regulates the Expression of EZH2 Target Genes in NeuronsMol Neurobiol. Mol Neurobiol Link
  • Dickson BM et al (2016). ArrayNinja: An Open Source Platform for Unified Planning and Analysis of Microarray Experiments. Meth Enzymol. doi: 10.1016/bs.mie.2016.02.002. Link
  • Klein BJ et al (2014). The histone-H3K4-specific demethylase KDM5B binds to its substrate and product through distinct PHD fingers. Cell Rep 6: 325-335. Link
  • Kim HS et al (2014). Identification of a BET family bromodomain/casein kinase II/TAF-containing complex as a regulator of mitotic condensin function. Cell Rep 6: 892-905. Link
  • Greer EL et al (2014). A histone methylation network regulates transgenerational epigenetic memory in C. elegans. Cell Rep 7: 113-126. Link
  • Fuchs SM, Krajewski K, Baker RW, Miller VL, Strahl BD (2011). Influence of combinatorial histone modifications on antibody and effector protein recognition. Curr Biol 21: 53-58. Link
  • Rothbart SB, Krajewski K, Strahl BD, Fuchs, SM (2012). Peptide microarrays to interrogate the histone code. Methods Enzymol 512: 107-135. Link
  • Rothbart SB et al (2012). Association of UHRF1 with methylated H3K9 directs the maintenance of DNA methylation. Nat Struct Mol Biol 19: 1155-1160. Link
  • Cai L et al (2013). An H3K36 Methylation-Engaging Tudor Motif of Polycomb-like Proteins Mediates PRC2 Complex Targeting. Mol Cell 49: 571-582. Link
  • Gatchalian J et al (2013). Dido3 PHD modulates cell differentiation and division. Cell Rep 4: 148-158. Link
  • Rothbart SB et al (2013). Multivalent histone engagement by the linked tandem Tudor and PHD domains of UHRF1 is required for the epigenetic inheritance of DNA methylation. Genes Dev 27: 1288-1298. Link
  • Ali M et al (2013). Molecular basis for chromatin binding and regulation of MLL5. PNAS USA 110: 11296-11301. Link
  • Kinkelin K et al (2013). Structures of RNA polymerase II complexes with Bye1, a chromatin-binding PHF3/DIDO homologue. PNAS USA 110: 15277-15282. Link

Histone Expression Vectors - Catalog Nos. 18-0002 to 18-0004

  • Lewis PW et al (2013). Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science 340: 857-861. Link