CUTANA™ Fiber-seq Kit Version 1

SCAN FOR MANUAL
Read latest
manual before
first experiment!

QUICK-START CARD

SAMPLE PREP (~30 MIN)

1. Prepare buffers as outlined below. Recipes contain 20% excess - no overage is needed. Note that protease inhibitor is not used in the Fiber-seq protocol.

BUFFER	COMPONENTS	1rxn	4rxn	8rxn	STORAGE
Nuclei Extraction Buffer	Pre-Nuclei Extraction Buffer	240 µL	960 µL	1.92 mL	lce for use
	1 M Spermidine	0.12 μL	0.48 µL	0.96 μL	
1X Reaction Buffer	Pre-1X Reaction Buffer	210 µL	840 µL	1.68 mL	lce for use
	1 M Spermidine	0.11 µL	0.44 µL	0.88 µL	

- 2. Collect starting cells by spinning at 600 x g for 3 min at RT. Remove supernatant, flick tube to loosen cell pellet and resuspend pellet in 1-2 mL 1X PBS.
- 3. Transfer 10 μ L cells to a new tube, add 10 μ L 0.4% Trypan Blue, and mix. Transfer to a cell counting slide. Determine cell counts, viability (>80%), and cell integrity.
- 4. Collect 2,000,000 cells/reaction (plus 10% excess if possible). Spin at $600 \times g$ for 3 min at RT. Remove supernatant.

NOTE: 2,000,000 cells/reaction input is recommended for human cells. See Appendix section in the manual for recommendations on cell inputs for other organisms.

- 5. Resuspend cells in 0.5 mL 1X PBS and transfer to a 1.5 mL tube to wash once.
- 6. Spin cells at $600 \times g$ for 3 min at RT. Resuspend in $200 \mu L/reaction$ cold **Nuclei Extraction Buffer**.
- 7. Incubate for 10 min on ice.
- 8. Spin at 600 x g for 3 min at 4°C.
- 9. Resuspend nuclei in 75 µL/reaction cold 1X Reaction Buffer.
- 10. Take 10 μ L nuclei and perform Trypan Blue staining as in Step 3. Obtain nuclei counts and confirm nuclei integrity. Nuclei should be >95% Trypan Blue positive, unclumped, and show minimal lysis.

NOTE: If severe sample clumping is observed, consider counting nuclei in 1X PBS instead for better accuracy: spin extracted nuclei after Step 7 at 600 x g for 3 min at RT, remove supernatant, and thoroughly resuspend nuclei in ~1 mL/reaction cold 1X PBS (supplemented with 0.5 mM Spermidine) before taking 10 μ L for Trypan Blue staining and counting. After counting, spin nuclei at 600 x g for 3 min at 4°C and resuspend with 75 μ L/reaction cold 1X Reaction Buffer.

Take caution as an extra wash step may cause additional loss of nuclei. Having sufficient nuclei (1,000,000 per reaction) is critical to the success of a Fiber-seq reaction.

FIBER-SEQ REACTION (~20 MIN)

- 11. For each reaction, pipette mix and transfer 1,000,000 nuclei to a PCR tube and bring the volume up to $56.5 \,\mu$ L with **1X Reaction Buffer**. Equilibrate to RT.
- 12. Add 1.5 µL 32 mM **SAM** to each reaction, pipette gently to mix, followed by addition of 2 µL **Hia5 for Fiber-seq** to initiate each reaction. The final reaction volume per tube should now be 60 µL. Pipette gently to mix.
- 13. Incubate reaction for 10 min at 25°C using a thermocycler.

NOTE: The standard Fiber-seq labeling reaction is optimized to achieve ~6% 6mA labeling in 1,000,000 human nuclei. See manual for details on success metrics and scaling guidance.

- 14. After incubation, stop the reaction by adding 6 µL 10% SDS to each reaction. Vortex to mix.
- Add 34 μL 1X Reaction Buffer to bring the volume to 100 μL. Proceed to genomic DNA extraction.

GENOMIC DNA EXTRACTION (~1 HR)

BEFORE FIRST USE PER KIT: Add ethanol (≥95%, not supplied in kit) directly to the **gDNA Wash Buffer** bottle.

For Kit 14-2001-8rxn, add 7 mL ethanol. For Kit 14-2001-24rxn, add 21 mL ethanol.

- 16. Add 1 µL Proteinase K and 3 µL RNase A to each reaction. Vortex to mix.
- 17. Add 100 µL **gDNA Cell Lysis Buffer** to each reaction. Vortex immediately and thoroughly to mix. The solution will become viscous at this point.
- 18. Incubate for 30 min at 56°C in a thermomixer with full speed agitation (~1,400 rpm). If a thermomixer is not available, use a heating block and vortex occasionally.
- 19. Add 400 µL **gDNA Binding Buffer** to each reaction. Pulse-vortex for 5-10 seconds to mix thoroughly.
- For each reaction, transfer the entire mix (~600 μL) to a gDNA Spin Column preinserted into a gDNA Collection Tube, without touching the upper column area. Proceed immediately to next step.
- 21. Close cap and centrifuge for 3 min at 1,000 x g to bind gDNA, then for 1 min at max speed (>12,000 x g) without taking tubes out of the centrifuge. Discard the flow through and the collection tube.
- 22. Transfer each column to a new **gDNA Collection Tube** and add 500 μ L **gDNA Wash Buffer.** Close the cap and invert a few times so that the wash buffer touches the cap. Centrifuge immediately for 1 min at max speed (>12,000 x g), then discard the flow through.
- 23. Reinsert the column into the collection tube. Repeat the wash with 500 μ L **gDNA Wash Buffer** per reaction.
- 24. Place each column in a DNase-free 1.5 mL tube and add 100 μL **gDNA Elution Buffer** preheated at 60°C. Close cap and incubate for 1 min at RT.
- 25. Centrifuge at max speed (>12,000 x g) for 1 min to elute the gDNA.
- 26. Quantify DNA with the Qubit fluorometer and assess gDNA quality on the Agilent TapeStation® using Genomic DNA ScreenTape and Reagents. See manual for example TapeStation traces.
- 27. Safe pause point. Store DNA at -20°C, or proceed to LRS library prep and sequencing based on individual platform instructions.

