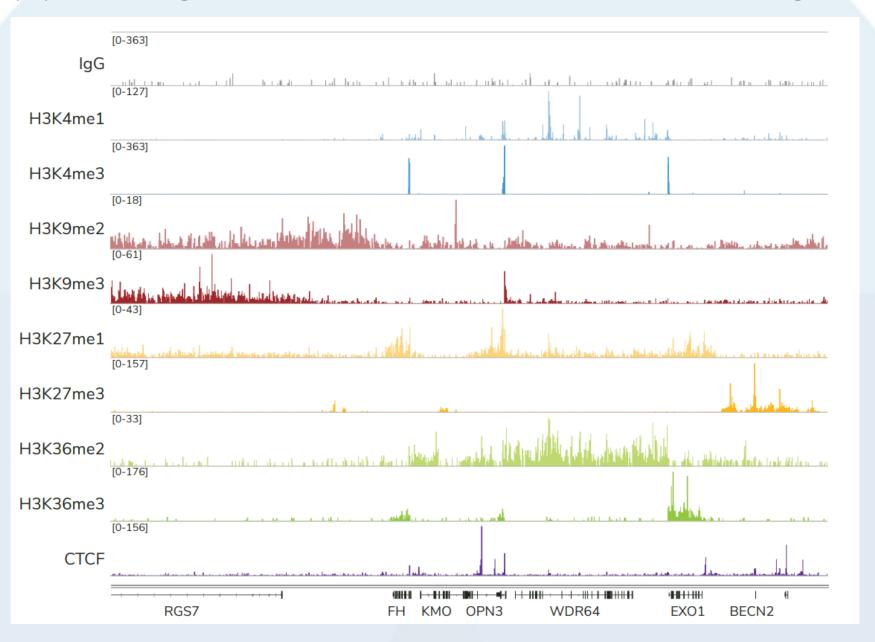
CUTANATM CUT&Tag : Powerful Platform for Streamlined, Ultra-Sensitive Epigenomics

James Anderson¹, Laylo Mukhsinova¹, Allison R Hickman¹, Vishnu U. Sunitha Kumary¹, Katherine Novitzky¹, John Pettingill¹, Eva Brill¹, Zu-Wen Sun¹, Martis W. Cowles¹, Bryan J. Venters¹, & Michael-Christopher Keogh¹

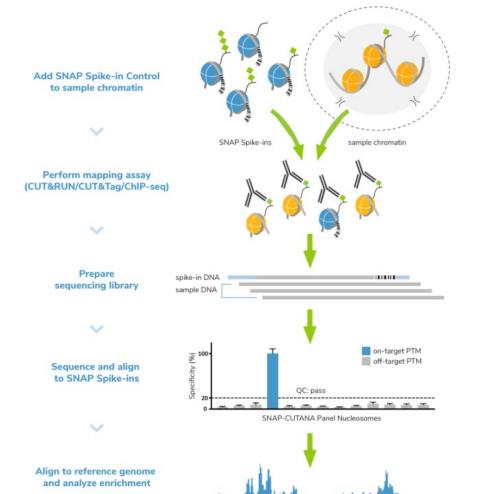
¹ EpiCypher Inc, Durham, NC 27709

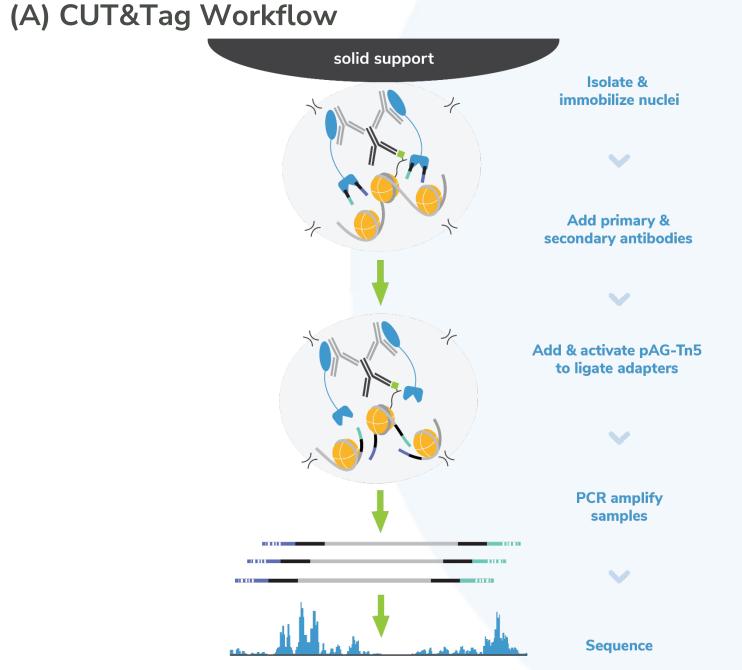

Improved assays and reagents are needed to advance epigenetic research

- > Epigenomic post-translational mapping for histone (PTMs) is essential for driving biological modifications discovery
- \succ ChIP-seq is the most widely used epigenomic mapping assay, but has major limitations:
 - X Depends on PTM antibodies which are notoriously cross-reactive^{1,2}
 - X Requires large cell numbers unsuitable for clinical or rare cell samples
 - X Poor data quality low signal to noise ratio, poor reproducibility
 - X Lacks defined controls crucial for reliable, quantitative results
- \succ Compared to ChIP-seq, CUT&Tag³ provides higher quality sequencing data with improved sensitivity and dramatically reduced background.

Advantages of CUTANA[™] CUT&Tag over

CUTANA[™] CUT&Tag is ideal for mapping histone PTMs


(A) CUT&Tag delivers robust data across diverse PTM targets


SNAP-CUTANA[™] Spike-ins are critical controls for reliable chromatin mapping

(A) SNAP Spike-ins for **CUTANA** Technologies

(C) Spike-In Workflow

ChIP-seq

(B) CUTANA[™] vs. ChIP-seq

Platform Comparison	ChIP-seq	CUTANA™ CUT&RUN	CUTANA™ CUT&Tag
Required Cells	>1 million	5,000-500,000	10,000-100,000
Ideal for Profiling	Histone PTMs, TFs	Histone PTMs, TFs & remodelers	Histone PTMs
Sequencing Depth (Reads)	>30 million	3-8 million	3-8 million
Experimental Throughput	Low	High	High
Signal-to-Noise	Low	High	High
Library Prep	Standard	Standard	Streamlined Direct-to-PCR

Figure 1. Overview of the CUTANA[™] CUT&Tag workflow and

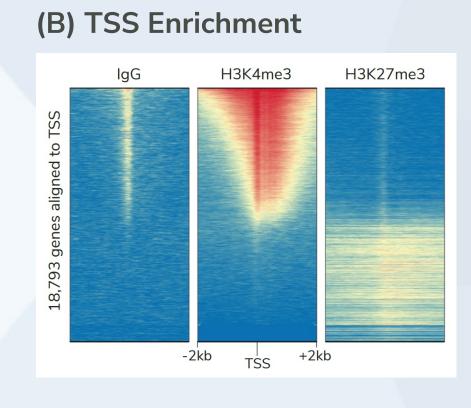
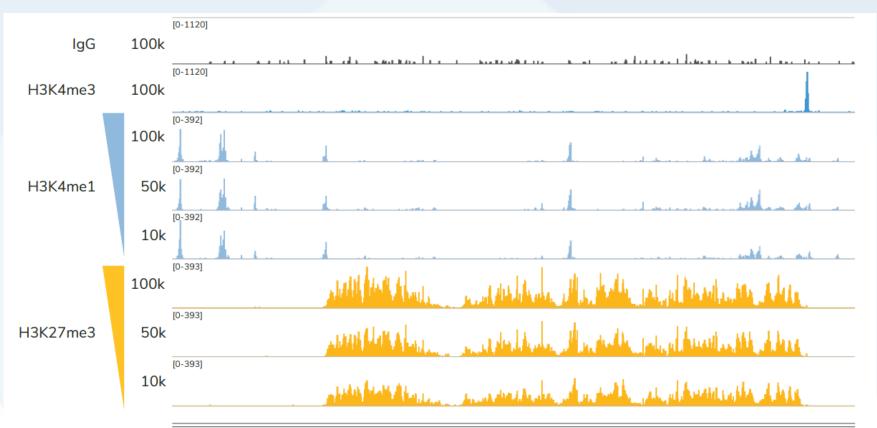
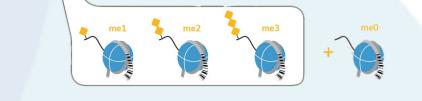




Figure 2. (A) CUTANA CUT&Tag generates high-quality profiles for targets in both active and repressed chromatin regions and select proteins. Rabbit IgG is shown as a negative control. (B) Expected results from CUTANA CUT&Tag assays. Genes are aligned across targets and ranked H3K4me3 intensity at transcription start sites (TSSs) from top (high signal, red) to bottom (low signal, yellow).

CUT&Tag excels at epigenetic profiling from low cell numbers

(A) CUT&Tag generates reliable profiles down to 10K cells

H3K36

(B) SNAP testing identifies

specific antibodies

(D) SNAP-CUTANA Specificity Heatmap

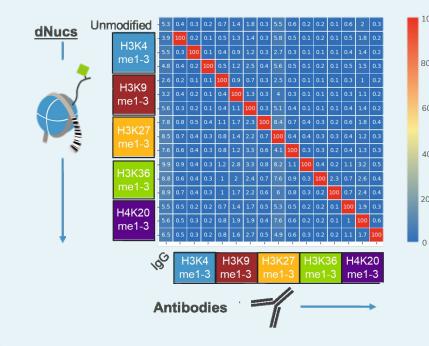


Figure 4. SNAP CUTANA controls be used for <u>S</u>ample can Normalization & Antibody Profiling in CUTANA assays. (A) SNAP-**CUTANATM** panels consist of defined, **DNA-barcoded** nucleosomes spiked-in to sample chromatin. (B) KMetStat panel that would be processed alongside sample as an ideal internal control. (C) Panel is spiked into CUT&RUN workflows just prior to antibody addition. (D) They provide a quantitative readout of on- vs. offtarget recovery that predicts nonspecific peaks in genomic data.

Conclusions

- ➤ CUTANATM technologies (CUT&RUN and CUT&Tag) are poised to rapidly replace ChIP-seq.
- \succ CUT&Tag uses a streamlined protocol to produce high quality data for diverse targets with low cell number requirements and reduced sequencing costs.
- > SNAP Spike-in controls inform antibody specificity and monitor assay success.
- CUTAC recapitulates published ATAC-seq datasets but with significantly improved sensitivity and signal-to-noise.

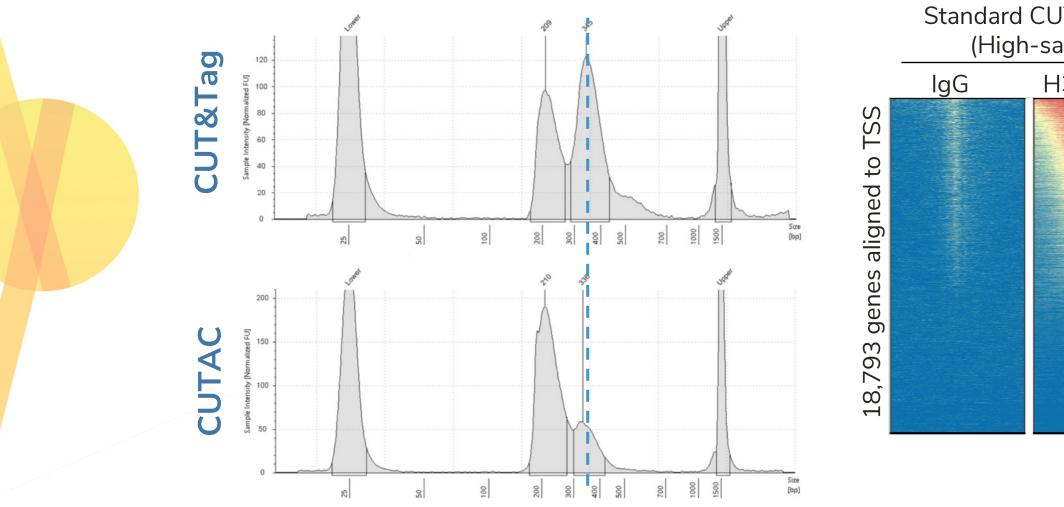
References

Shah et al. Examining the roles of H3K4 methylation states with systematically characterized antibodies. *Mol. Cell* **72**, 162-177 (2018).

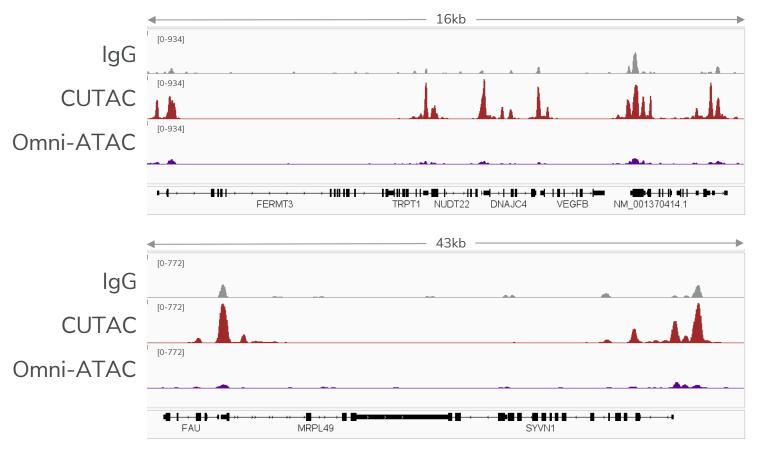
advantages compared to ChIP-seq. Because CUTANA[™] technologies release antibody bound fragments into solution (A), it has improved signal-to-noise even with significantly reduced cell numbers and sequencing depth (B). In CUT&Tag, pAG-Tn5 inserts sequencing adapters at antibody bound chromatin in intact nuclei, streamlining library preparation.

<u>─→─╉→→</u> ┠→┼→╂┼╂┣╸╃╴╺╣	┼╺╂┼╺╢	┠╶┝──┼╶╂╏╏╏╎╎╎╎╴╫╫╫╎╎╎╎	╞╸┫→╶┼╴┼┼┼	╆╸┠╋╫╂╉╶╫╴┼╫
ABL1 QRFP	FIBCD1	LAMC3	AIF1L	NUP214

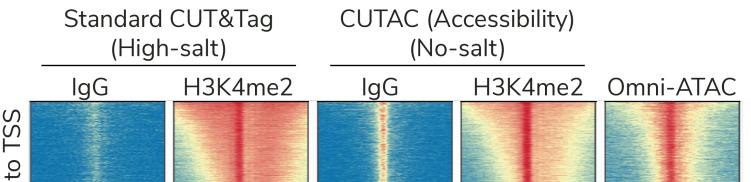
Figure 3. (A) CUTANA CUT&Tag enables reliable chromatin profiling from low cell numbers. CUT&Tag was used to map H3K4me1 and using decreasing numbers of K562 cells. Data quality at 10,000 cells is comparable to standard inputs of 100,000 cells.


- 2. Small et al. Chromatin Immunoprecipitation (ChIP) to study DNA-Protein Interactions. Methods Mol. Biol. 2261, 323-343 (2021).
- 3. Kaya-Okur HS et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat Commun 10, 1930 (2019)
- 4. Steven HenikoffJorja G HenikoffHatice S Kaya-OkurKami Ahmad (2020) Efficient chromatin accessibility mapping in situ by nucleosome-tethered tagmentation. *eLife* 9:e63274.

CUTAC : Identifying Open Chromatin with Modified CUT&Tag


(A) CUTAC conditions differ from CUT&Tag

Platform Comparison	CUT&Tag	CUTAC	
Feature Enrichment	Histone PTMs	Chromatin Accessibility	
Detection Reagent	PTM-specific Antibody	H3K4me2 Antibody	
Tagmentation Salt Conditions	300mM NaCl, 10mM MgCl ₂	0mM NaCl, 5mM MgCl ₂	
Tagmentation Time	1hr	20min	
Tagmentation Temperature	37C	37C	


(B) CUTAC releases smaller genomic fragments than CUT&Tag

(C) CUTAC shows stronger signal than Omni-ATAC

-2 kb T_{SS} +2 kb

(E) Peak calling comparisons across CUTAC, CUT&Tag, and Omni-ATAC

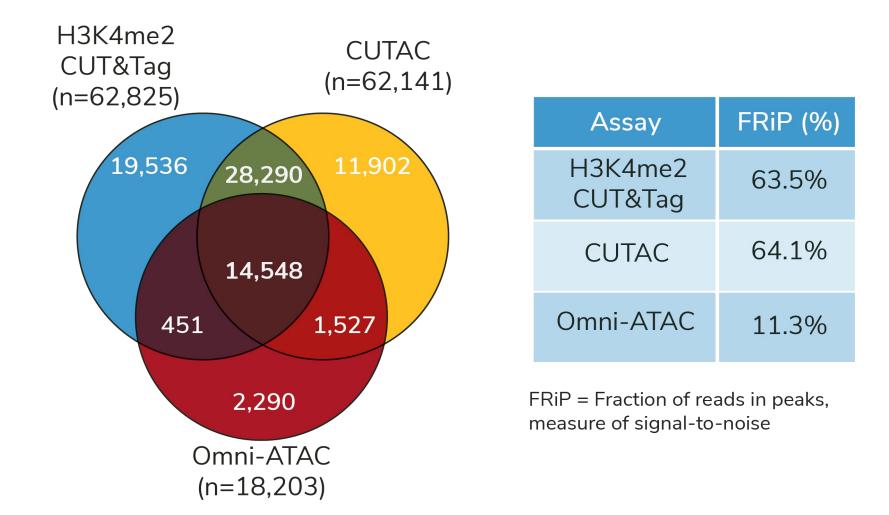
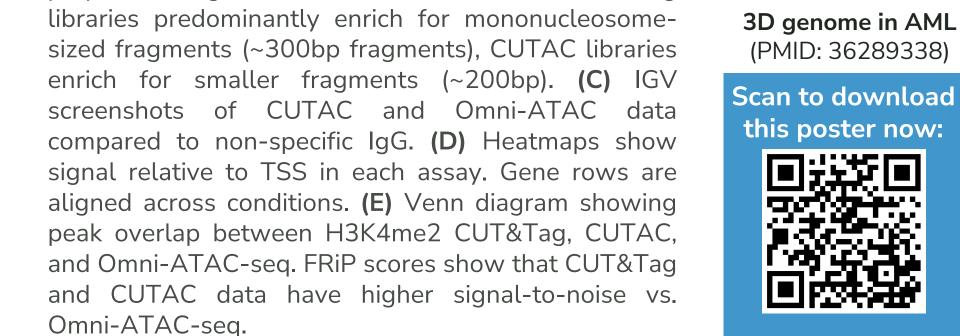



Figure 5. CUTAC⁴ is an exciting new application of CUT&Tag that identifies open chromatin regions by restricting tagmentation to accessible DNA at nearby transcriptionally active chromatin. (A) CUTAC experiments use less salt and a shorter tagmentation time compared to CUT&Tag. (B) TapeStation traces from CUTANA CUT&Tag and CUTAC libraries prepared using H3K4me2 antibodies. While CUT&Tag

Other Applications of CUT&Tag

SWI/SNF in SARS-CoV-2 Infection (PMID: 36894709)

CD4+ T cell calibration (PMID: 37188942)

