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TEM-seq excels at sub-nanogram
amounts of input DNA

Molecular crosstalk between DNA methylation TEM-seq allows sensitive profiling to relate

and other chromatin features DNAmMe to Histone PTMs and ChAPs
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Blue = unmethylated CpG; Red = methylated CpG. TEM-seq generates high quality genomic maps
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In vitro characterization of Rett syndrome
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(B) TEM-seq reveals differences in DNAme
levels linked to Rett MeCP2 mutants
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