Development of a high-throughput CUT&RUN platform for epigenomic mapping of rare primary immune cells

Laiba Khan¹, Matthew R. Marunde1, Allison R. Hickman1, Carolina P. Lin Windham1, Danielle N. Maryanski1, Ellen N. Weinzapfel1, Karlie N. Fedder-Semmes1, Liz Albertorio-Saez1, Dughan J. Ahimovic2, Michael J. Bale2, Juliana J. Lee3, Bryan J. Venters1, Michael-Christopher Keogh1, Immunological Genome Consortium

¹ EpiCypher Inc., Durham, NC, USA; ² Weill Cornell Medicine, Department of Pathology and Laboratory Medicine, New York, NY, USA; ³ Harvard Medical School, Department of Immunology, Boston, MA, USA

Epigenetic regulation is central to cell and gene therapy, but has been challenging to study

- \geq Many genomic strategies for cell & gene therapy focus on transcription; however, RNA-seq reveals the **outcomes** – not driving **mechanisms**
- Epigenomics is the solution: Mapping the location of histone post-translational modifications (PTMs) and chromatin-associated proteins, such as transcription factors, provides molecular insights that are central to cell fate and function
- > However, existing epigenomic technologies, such as **ChIP-seq**, are limited by high costs, poor sensitivity & reliability, and complicated sample prep
- \geq These challenges have precluded epigenomic analysis for cell & gene therapy

Figure 1: Understanding epigenetic regulation is critical to successful cell and gene therapy applications:

Defined nucleosome controls identify specific and efficient antibodies needed for reliable epigenomics

- of histone PTM antibodies are unfit for genomic mapping... but good ones do exist! ChromatinAntibodies.com
- SNAP-ChIP field survey of PTM antibodies: PASS = <20% cross-reactivity; >5% recovery 392 Antibodies tested Total 71% Failure rate 24 Antibodies tested Most cited 4,751 antibodies # Citations (top 10 studied PTMs) 79% Failure rate

Search your PTM **v** Search your antibody

E0045.2																	
E0332.2																	
E0037.1																	
E0045.4																	
E0045.1																	
E0683.1																	
E0045.3																	
E0332.1																	
E0760.1																	
E0649.2																	
E0649.1																	
E0379.2																	
E0478.1																	
E0379.1																	
E0041.1			1														
	efficiency une	shifted v	Bthreit w	3Kame2	Hanes H	stonet v	stone2 w	3K9ne3 H3	R2Tmet H34	21mel H3	R2 Ine3 H3	F36met H3	C36mel H3	C36me3 H	Alone1 H	A 20mel HA	28me3

B. SNAP-CUTANA[™] spike-ins identify best-in-class CUT&RUN antibodies

High Specificity:

High Efficiency:

autoCUT&RUN enables robust mapping of chromatin-associated proteins at low cell inputs

- A. Automation halves hands-on time and increases throughput >8X
 - \rightarrow End-to-end optimization for sample prep to library QC
 - Reduced variance and reaction volumes with 96-well liquid handling
 - > Standardized workflow for native and cross-linked cells and nuclei
 - > Buffer optimization for improved sample handling

B. High signal-to-noise down to 5k cells **C.** Reliable signal across inputs

CUTANA[™] CUT&RUN is a novel workflow that enables streamlined epigenomic mapping

Figure 3. A field survey of histone PTM antibodies shows that the vast majority lack the specificity and efficiency required for reliable genomic mapping (A). As the field transitions to CUT&RUN, identifying reliable reagents is key to enable new insights (B).

Assembling the pieces for automation: Deploying epigenomics at unprecedented scale & sensitivity

ChIP-seq proved difficult to automate -	Platform comparison	ChIP-seq	CUTANA™ CUT&RUN	Implications for automation		
CUT&RUN empowers epigenomics at scale.	Sample input	Fragmented chromatin	Intact cells or nuclei	Streamlined workflow		
	Required cells	>1 million	500k - 5k	Take precious samples further		
Validated	Defined controls	Uncommon	SNAP Spike-ins	Standardized protocols		
Robust Assay	Seq depth (reads)	>30 million	3-5 million	Greater multiplexing		
	Assay cost (per reaction)	~\$225	~\$72	70% cost savings		
	Signal- to-noise	Low	High	Better data quality		
Scalable Defined Workflow Controls	Experimental throughput	Low	High	Compatible with 96-well plates		

Figure 4. The optimized automated CUTANA[™] CUT&RUN (autoCUT&RUN) protocol (A) generates comparable maps for various histone PTMs using decreasing amounts of K562 cells (B). A Pearson correlation matrix (C) shows high concordance across cell numbers for each target.

Application of autoCUT&RUN to generate reference epigenomic maps of the mouse immune system

ecific and efficient SNAP-Certified™ Antibodies enabled profiling from **10k FACS-sorted mouse primary immune cells** per reaction

Figure 2. CUT&RUN uses a streamlined workflow to release antibody-bound chromatin into solution, leaving background in bead-immobilized cells. Compared to historical ChIP-seq assays, CUT&RUN generates higher resolution data with >100fold reduced cell inputs and >10-fold reduced sequencing depth. Defined nucleosome controls (SNAP-CUTANA[™] Spike-ins) enable assay standardization.

>SNAP Spike-in Controls were used to monitor sample integrity and confirm reaction success in 96-well plates

>Generated >2,200 CUT&RUN profiles in this multi-site collaboration

autoCUT&RUN defines immune cell differentiation pathways for advanced cell & gene therapy research

Figure 5. autoCUT&RUN profiling of FACS-sorted type 3 ILCs (10k cells/reaction) identifies unique

Figure 6. autoCUT&RUN reveals distinct H3K4me3 (active promoters) and H3K27me3 (repressed genes)

(H3K4me3), gene bodies (H3K36me3), repressed genes (H3K27me3), and transcription factor binding ImmGen consortium. 10k cells were used per autoCUT&RUN reaction.

