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Biochemical and genomic approaches for high throughput 
drug discovery in chromatin remodeling research

EpiDyne® remodeling assay and genomic 
approaches in remodeler research

Figure 3. EpiDyne-TR-FRET remodeling assay. (A) Enzyme-, ATP- and time- 
dependent remodeling reactions by SMARCA2.  (B) Z’ analysis and (C) tool 
compound5,6 inhibition of  SMARCA2/BRM remodeling in EpiDyne-TR-FRET.  
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EpiDyne-TR-FRET (HTS compatible) for real time 
remodeler studies

Functional epigenomic approaches in remodeler research

Chromatin remodeling is mediated by ATP-dependent enzymes that play key roles 
regulating gene expression and genome replication / repair. Aberrant nucleosome 
organization from dysregulated chromatin remodeling can severely alter chromatin 
accessibility and disrupt these important processes, thereby driving various cancers. 
Remarkably, nearly 20% of all human cancers contain mutations in subunits from the 
SWI/SNF family of chromatin remodeling complexes, making them of great interest to 
basic research and therapeutic intervention1,2. 

In vitro studies on the remodeling enzymes such as SMARCA2/4/5 (and their multi-
subunit complexes) are challenging, partially due to the strong preference for 
nucleosome-based substrates (the physiological target of these enzymes). We have 
created the EpiDyne® nucleosome portfolio to examine chromatin remodeler activity in 
biochemical assays, and here present the development of novel readouts (-
PicoGreenTM and -TR-FRET). These nonradioactive plate-based assays are automation 
adaptable, ready for high-throughput inhibitor screening, and can be customized for 
various remodeling enzymes that exhibit preferences in nucleosome composition (e.g. 
histone type or DNA linker length). 

For parallel in vivo studies we note that genome-wide remodeler localization and 
open chromatin mapping are fundamental for understanding the function / activity of 
these enzymes in cancer development and inhibitor responses. However, traditional 
genomic approaches have significant issues: e.g. ChIP-seq demands high cell numbers 
and sequencing depths, and is unable to effectively map ATPases without heavily 
modified protocols; while ATAC-seq to map open regions deals poorly with cross-linking 
that could stabilize transient states of interest. To these ends, we optimized the 
CUTANA� CUT&RUN approach to efficiently capture the localization of all major classes 
of chromatin remodelers with high signal to background in multiple tissue cultures, 
enabling evaluation of specificity and/or efficiency from remodeler targeting inhibitors or 
degraders. We have also adopted NicE-seq for chromatin accessibility profiling in cross-
linked material that captures landscape changes in response to remodeling disruptions. 
As complementary tools to the EpiDyne platform, CUT&RUN and NicE-seq facilitate 
epigenomic research on chromatin remodelers in cancer therapeutic intervention.
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EpiDyne-picogreen (HTS compatible) reveals remodeler 
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Figure 2. EpiDyne-PicoGreen remodeling assay. (A) Enzyme-, ATP- and time- 
dependent remodeling reactions by SMARCA2 (BRM). (B) Initial rates for terminally [6-
N-66] or centrally [50-N-66] positioned nucleosomes by various ATPases4, plotted for 
reactions within linear ranges. (C) Substrate preference for various SMARCA5 
remodeling complexes in EpiDyne-picogreen. (D) Z’ analysis and tool compound5,6 
dose response for SMARCA5/SNF2H compared to SMARCA2/BRM remodeling with 
EpiDyne-PicoGreen.
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Figure 5. NicE-seq8,9 measures chromatin response to SMARCA2/4 remodeling inhibitor. Peaks were called from 
100k formaldehyde-fixed NCI-H1299 cells (untreated / DMSO / + BRM0145,6).  (A) Volcano plots of differential peak 
occupancy between untreated and H1299 drug treated cells.  (B) Representative biomarker (KRT80; locus functionality is 
reliant on SMARCA2 (BRM) function6) showing open chromatin changes in response to BRM014 treatment.

SMARCA2/4 disruption alters chromatin accessibility 

Platform Comparison ATAC-seq NicE-seq
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Figure 1. EpiDyne Nucleosome 
remodeling Assay Designs. (A) 
PicoGreen3 (B) TR-FRET
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Figure 4. Performance comparisons of EpiDyne remodeling assays. 
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Figure 4. CUT&RUN validation of CUTANA compatible antibodies against remodelers in drug treatments. (A) 
Experimental workflow. Proliferating H1299 cells were treated with 1 µM of SMARCA2/4 targeting BRM0145,6, AU-153309 , 
ACBI110, or 0.1% DMSO vehicle control for 4 hours before light crosslinked and harvested for CUT&RUN mapping. (B) 
Heatmaps showing SMARCA2 and H3K4me3 enrichment at TSS and their responses to variant drug treatments. Rows are 
aligned, ranked and group scaled by intensity (top to bottom) in respective DMSO controls and colored such that red indicates 
high localized enrichment and blue denotes background signal. (C) Representative chromatin regions showing enrichment of 
core or accessory remodeler proteins in response to DMSO, various allosteric or PROTAC based drugs, group scaled by 
individual targets.
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