Direct multi-omics for the masses: Linking DNA
methylation to chromatin targets via TEM-seq

Keith E. Maier!, Bryan J. Venters', Vishnu U. Sunitha Kumary', Allison Hickman', Anup Vaidya', Ryan Ezell', Jonathan M. Burg', Louise Williams?, Chaithanya Ponnaluri?,
Hang Geong Chin?, Pierre Esteve?, Isaac Meek?, Sriharsa Pradhan?, Zu-Wen Sun', Martis W. Cowles’, & Michael-Christopher Keogh'

1 EpiCypher Inc., Research Triangle Park, Durham NC 27709, USA, 2New England Biolabs, Ipswich, MA 01938

Molecular crosstalk between DNA methylation

and other chromatin features

DNA methylation (DNAme) is an epigenetic mark that includes the modification of
cytosine resides (5mC) within CpG islands. In addition to well characterized roles regulating
gene expression, imprinting and silencing parasitic DNA elements, the misregulation of
DNAme is implicated in multiple diseases. Evidence is emerging that DNAme is not an

TEM-seq allows sensitive profiling to relate

DNAme to Histone PTMs and ChAPs

independent epigenetic mark but rather closely linked to the post
(PTM) of histone proteins. However, examining the direct relationships between 5mC and
PTMs are hampered by correlated analyses of separate assays that cannot establish a
direct mechanistic linkage. Furthermore, the traditional approach to measure 5mC relies
upon harsh bisulfite chemical conversation of DNA, which introduces DNA breaks and
systemic biases.
To address these we a Targeted

sequencing (TEM-seq) approach, an ultra-sensitive multi-omic genomic mapping technology
that delivers high resolution DNAme profiles at epitope-defined chromatin features.
Importantly this assay examines the direct molecular link between 5mC and histone PTMs
or chromatin associated proteins (ChAPS).
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Figure 1: Gene expression s regulated by chromatin structure and accessibility. PTMs provide useful
markers of chromatin elements, stich as promoters, enhancers, and gene bodies. Adapted from (1).

TEM-seq is a powerful multi-omic assay that
directly links 5mC to PTMs and/or ChAPs
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Figure 2: Workflow for TEM-seq (Targeted Enzymatic Methylation-sequencing).

TEM-seq reveals distinct DNAme levels linked to different
histone PTMs and ChAPs
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Figure 3: Percent melhylanon analysis from TEM-seq data sets are consistent with_known biological
functions of antibody tar M-seq was performed using a set of antibodies to different histone PTM
or chromatin targets. For each data set, the percent of methylated CpGs was calculated to provide a
global view of relative methylation directly linked to each antibody target.
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Figure 4: TEM-seq genome browser tracks using a range of histone PTM and ChAP (Chromatin

Associated Protein) targets. Composite histone PTM or ChAP signal (.e. CUT&RUN data) is in gray.

Blue = unmethylated CpG; Red = methylated CpG. TEM-seq generates high quality genomic maps for

both histone PTMs and ChAPs and also reveals differential DNAme at various genomic regions, (€.g.
at gene bodies / at promoters).

TEM-seq: Highly reproducible and sensitive at low seq depths
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Figure 5: (A) TEM-seq assays are highly reproducible. Biological replicate analysis in K562, GM12878,
and MCF7 cells shows that TEM-seq assays are highly reproducible (r > 0.91). (B) TEM-seq genome
browser tracks for H3K36me3 were randormly downsampled / analyzed at represented sequence depths
and similar DNAme distribution observed using as few as 5M reads.
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TEM-seq spike-ins provide quantitative metrics
for rigorous assay monitoring

Figure 7 (A) dNuc spike-ins are compatible
with TEM-seq assays. Heatmap showing the

percent enrichment of each antibody tested
(HaKimed,  FOK27mes,  HKa6mES, ot
H3K9me3). Red and blue colors indicate high
and low binding specificity, respectively. (B)
DNA spike-ins are compatible with TEM-seq
assays. Spike-in DNAS were used to monitor
enzymatic conversion  across _ different
targets. As expected, we observed a >95%
conversion of our methylated DNA control
and <0.5% conversion of the unmethylated
DNA . Benchmarking with EM-seq
datasets (WGEMseq) shows that these
results are consistent with conventional EM-
seq reactions
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In vitro characterization of Rett syndrome
MeCP2 mutants with Luminex assay

Figure 9: Schematic of MeCP2 structure. MeCP2 contains a Methyl CpG binding domain (MBD), a
transcription repression domain (TRD), a C terminal domain (CTD) and AT-like hooks (DNA-binding
elements). Adapted from (8).
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resulting from mutation of the DNAme reader MeCP2
(8), a transcriptional repressor that binds methylated

CpG residues via its Methyl Binding domain (MBD).
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Figure 10. Luminex characterization of MeCP2 and Rett syndrome mutations. (A) GST-MeCP2
MBD WT shows a strong preference for symmetrically methylated 5mC, most particularly in the
nucleosome context (right panel) compared to free DNA (left panel). (B) Impact of Rett syndrome
mutations on binding of MeCP2 MBD to free DNA under decreasing NaCl concentrations. The red box
indicates conditions chosen for reader TEM-seq studies with GST-MeCP2 MBD WT (see Figure 11).

TEM-seq provides multi-omic insights into Rett syndrome

(A) EpiCypher dNucs can be used as
spike in controls to monitor specific

enrichment in reader TEM-seq

Experimental design for MeCP2
1. WT Non Methyl biotin-199x601
2. Hemi Methyl biotin-199x601

3. Symmetric Methyl biotin-199x601
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(B) TEM-seq reveals differences in DNAme
levels linked to Rett MeCP2 mutants
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Figure 11. Reader TEM-seq using GST-MeCP2. A) MeCP2 MBD WT was used in a
reader TEM-seq experiment with non-methyl, hemi-methyl and symmetric-methyl Nucs
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compared to non- memyl (135loid) and hemi-methyl (19- fold) Nucs. Anti H3K4me3 and
SNAP-CUTANA K-MetStat mini-panel (Figure 2) positive control showed 81-fold
enrchment of Hakdmed over unmadified Nuc, (B) Percent methylation analysis reveals

fect of Rett mutants in the meCP2 binding (C) Genorme browser tracks (CUT&RUN
and TEM-Seq) for GST-MeCP2 MBD using K562 cells show s localization to methyl-
CpG (red) over non methyl CpG (blue).

Conclusions

> TEM-seq is a novel multi-omic approach that directly links PNA methylation to
chmma(m features.
M-seq delivers high quality data at low sequence depths.
Sp\kem Conlrols are important to moritor TEN 664 performance.
dOypher 3.0 optimizes condiions for reader TEN-seq experiments,
Iseq can be leveraged to gain mechanistic insights into clinically relevant
chmma(m reader domains (e.g., MDB of MeCP2)
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